
 

The document is for Data I/O customers only. 

BBM ZIMG User Manual 

 
General Description and Name 

 
This scheme Implements the skip block method within particular partition. There are 3 

identical Block header at the certain position. 

The last 4 physical blocks should reserve for the BB table (BBT). One is primary, the other is 

the mirror. 

This BBM also overwrite the MFG BB mark position. Pay attention to keep the BBT. 

 

Relevant User Options 

 

The following special features on the special features tab apply to this scheme.  The 

default values might work in some cases but please make sure to set the right value 

according to your system. 

Please note only the below special feature items are related to this scheme and ignore any 

others. If any of below items doesn’t exist, please check whether the right version has 

been installed or contact Data I/O for support by submitting Device Support Request 

through this address: 

http://www.dataio.com/support/dsr.asp 

 

Bad Block Handling Type =   “BBM ZIMG” 

 

Spare area =     “Disable” 

Or “Enable”depend on your data file. 

 

PartitionTable File = The path of the partition table file on your PC. 

 

Check BB Marker In DataFile =  “Disabled” 

 

BB: mark position  = “6” 

To this BBM, the MFG BB mark is at the 6
th

 offset of the OOB. 

 

Bad block detection = “BBM then BB marker” 

 

ZIMG: SwVersion  =  depend on your file. this value can be get from File header or the 

File tail.[default 0x161] 

 

ZIMG: TotalBlocks = depend on your file. usually this is the block number of the KFS 

area. [default 0xCA] 

 

ZIMG: BlockHeadStartPartition =  “2” 

Set the Block header start partition from the “PartitionTable File’, e.g. for this case it is 

the 2
nd

 row of the partition. Then this value should be 2. 

  

 

http://www.dataio.com/support/dsr.asp


 

The document is for Data I/O customers only. 

 

 

 

User Checksum Implications  

 

If this scheme, the TaskLink checksum will be different from the device checksum because 

of the bad block table that contains possible bad blocks list. 

 
Image Preparation  

This scheme support at least two file merged together. 

One is the “rescue” file, other is the “KFS” file. 

Due the KFS contain 0x20 Bytes of File header, which need to be cut before merge. 

Also, keep the KFS position = KFS start position + 3 blocks. Because the 3 identical block 

header need to be reserved. The block header will be generating dynamic once programming. 

 

Rescue file 

 

 

 

 

 

 

 

 

Target image 

 

KFS0 file,cut 

the first 0x20 

Block 0 

Block 32 

Block 32 + 3 

Block 32 + 3 + KFS 

file length 

3 identical block header: reserve 

4 Block BBTS: reserve 

Block 456 

Block 456 + 3 

33333 

Block 456+ + KFS 

file length 

3 identical block header: reserve 

KFS1file,cut 

the first 0x20 

duplicate of 

KFS 



 

The document is for Data I/O customers only. 

Partition file Preparation  

The last four blocks of the device should be reserved to store Bad block tables (BBTs). It also 

means your partitions shouldn’t contain the four blocks for any other usage. 

 

 

Special Notes 

 Pay attention the BB mark position, make sure it is 0xFF. 
 Format of PartitionTable.mbn: 

a. Binary file fixed length 256 bytes. 

b. Organization:16 rows x 4 columns.  Each table item is 32-bits, little endian byte ordering. 

c. Each row of the table describes configuration for one partition.  Up to 16 partitions can be used. 

d. Partition configuration: 

i. Start Adr:  address of start of partition in flash blocks.  The programmer will set the file 

read pointer and the programmer write pointer to Start Adr.  If Start Adr=0xFFFFFFFF, 

skip to the next partition. 

ii. End Adr:  last valid block in the current partition.  The last data block programmed must 

be equal to or less than End Adr, otherwise the programmer will reject the flash device. 

iii. Actual Data Length:  number of blocks of data to read from the input file and write to 

the flash in the current partition 

iv. Attribute:  ignore 

Please note to keep: Actual Data Length <= End Adr - Start Adr + 1  for this BBM 

v.Example PartitionTable.mbn 

file:

Start Adr End Adr

Actual Data

Length

0x0 0x7FF 0x360 0xFFFFFFFF

0x800 0xFFF 0x30 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

NAND Flash Block

Attribute

 

 

 

Revision History 
 

V1.0 Date: 2013-01-30 
 Create this spec. 

V1.1 Date: 2013-03-22 
 Change S.F. 

V2.0 Date: 2013-04-24 
 Change Picture for memory map 

 

 

 



 

The document is for Data I/O customers only. 

Appendix 

You can get the file “Description of common NAND special features.pdf” from 

http://ftp.dataio.com/FCNotes/BBM/ 

http://ftp.dataio.com/FCNotes/BBM/

