GBBM2_PIA_RFS121 User Manual

General Description and Name

GBBM2_PIA_RFS121. This scheme Implements the Samsung GBBM2.2 bad block handling type. It uses an extra table for LPIA information. (Please refer to GBBM 2.2 spec for some abbreviations). This BBM is only for OneNand 1Kbyte or 2Kbyte device.

Relevant User Options

The following special features on the special features tab apply to this scheme. The default values might work in some cases but please make sure to set the right value according to your system.

Please note only the below special feature items are related to this scheme and ignore any others. If any of below items doesn't exist, please check whether the right version has been installed or contact Data I/O for support by submitting Device Support Request through this address:

http://www.dataio.com/support/dsr.asp

Bad Block Handling Type = "GBBM2_PIA_RFS121"

<u>Spare area</u> : Please refer to "Description of common NAND special features.pdf". *Normally set as "Enabled" or "Disabled" for this BBM*.[Default 'Disabled']

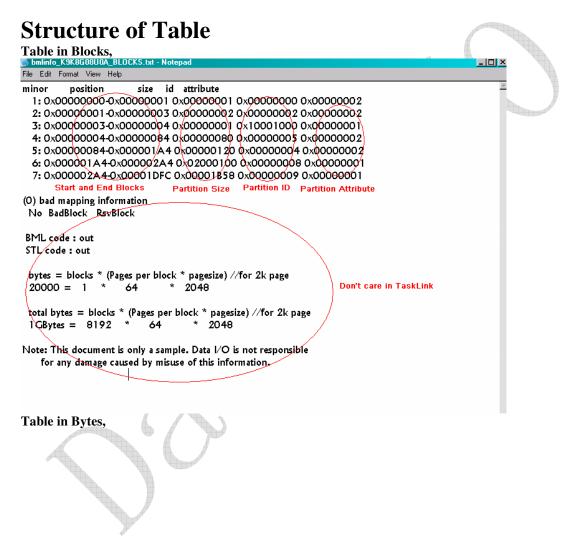
<u>Unlocked area: Start block</u> = "0x?" It depends on the customer in hex.

<u>RBA area: Number of blocks</u> = "?" It depends on the customer in dec. Samsung recommends this value = Max number of bad blocks + 6 extra block. Take 1024 blocks as an example, it should be 26.

<u>RBA area: Start blocks</u> = "?" It depends on the customer in dec. It equals number of the device blocks – RBA area : Number of blocks.

<u>UBA area: Start blocks = "?"</u> It depends on the customer in dec. It should be 0 in GBBM2.2.

<u>Partition Table Format start size</u> = "BLOCKS" OR "BYTES". It depends on what type of table is used.


<u>Partition Table File = "?"</u>. The path of the table file.

Special Notes

Bad block table called BMS in GBBM2.2.

If this scheme, or any bad blocking scheme is used, there are implications to the checksum of the image. As with any device, TLWin produces a checksum over the entire image rather than just the user data file.

If the chosen spare area option is "enabled", then the checksum will not be affected. It will be a checksum of the user data plus FFs to the end of the device image.

bmlinfo_K9K8G08U0A_BYTES.txt - Notepad	
e Edit Format View Help	
inor position size id attribute	
1: 0x0000000-0x00020000 0x00020000 0x0000000 0x00000002	
2: 0x00020000-0x00060000 0x00040000 0x00000002 0x00000002	
3: 0x00060000-0x00080000 0x00020000 0x10001000 0x00000001	
4: 0x00080000-0x01080000 0x01000000 0x00000005 0x00000002	
5: 0x01080000-0x03480000 0x02400000 0x00000004 0x00000002	
6: 0x03480000-0x05480000 0x02000000 0x00000008 0x00000001	
7: 0x05480000-0x3BF80000 0x36B00000 0x00000009 0x00000001	
)) bad mapping information	
No BadBlock RsvBlock	
ML code : out	
TL code : out	
bytes = blocks * (Pages per block * pagesize) //for 2k page	
20000 = 1 * 64 * 2048	
total bytes = blocks * (Pages per block * pagesize) //for 2k page	
1GBytes = 8192 * 64 * 2048	
lote: This document is only a sample. Data I/O is not responsible	
for any damage caused by misuse of this information.	

The difference between the 2 types of tables only lays in the position and size information.

Revision History

V1.0 June 12, 2009 Create this spec.

Appendix

You can get the file "Description of common NAND special features.pdf" from http://ftp.dataio.com/FCNotes/BBM/